Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Recent Advances in Computer Science and Communications ; 15(6):859-867, 2022.
Article in English | Scopus | ID: covidwho-1892500

ABSTRACT

Background: Humanity today faces a global emergency. It is conceivably the greatest crisis of our generation. The coronavirus pandemic, which has many global implications, has led researchers worldwide to seek solutions to this crisis, including the search for effective treatment in the first place. Objective: This study aims to identify the factors that can have an essential effect on COVID-19 comportment. Having proper management and control of imports of COVID-19 depends on many factors that are highly dependent on a country's sanitary capacity and infrastructure technology. Nevertheless, meteorological parameters can also be a connecting factor to this disease;since temperature and humidity are compatible with a seasonal respiratory virus's behavior. Method: In this work, we analyze the correlation between weather and the COVID-19 epidemic in Casablanca, the economic capital of Morocco. It is based on the primary analysis of COVID-19 surveillance data from the Ministry of Health of the Kingdom of Morocco and weather data from the meteorological data. Weather factors include minimum temperature (°C), maximum temperature (°C), mean temperature (°C), maximum wind speed (Km/h), humidity (%), and rainfall (mm). The Spearman and Kendall rank correlation test is used for data analysis. Between the weather components. Results: The mean temperature, maximum temperature (°C) and Humidity were significantly correlated with the COVID-19 pandemic with respectively (r=-0.432, r =-0.480;r=0.402, and p=-0.212, p=-0.160, and p=-0.240). Conclusion: This discovery helps reduce the incidence rate of COVID-19 in Morocco, considering the significant correlation between weather and COVID-19, of about more than 40%. © 2022 Bentham Science Publishers.

2.
Environ Sci Pollut Res Int ; 29(11): 16017-16027, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1460447

ABSTRACT

The WHO characterized coronavirus disease 2019 (COVID-19) as a global pandemic. The influence of temperature on COVID-19 remains unclear. The objective of this study was to investigate the correlation between temperature and daily newly confirmed COVID-19 cases by different climate regions and temperature levels worldwide. Daily data on average temperature (AT), maximum temperature (MAXT), minimum temperature (MINT), and new COVID-19 cases were collected from 153 countries and 31 provinces of mainland China. We used the spline function method to preliminarily explore the relationship between R0 and temperature. The generalized additive model (GAM) was used to analyze the association between temperature and daily new cases of COVID-19, and a random effects meta-analysis was conducted to calculate the pooled results in different regions in the second stage. Our findings revealed that temperature was positively related to daily new cases at low temperature but negatively related to daily new cases at high temperature. When the temperature was below the smoothing plot peak, in the temperate zone or at a low temperature level (e.g., <25th percentiles), the RRs were 1.09 (95% CI: 1.04, 1.15), 1.10 (95% CI: 1.05, 1.15), and 1.14 (95% CI: 1.06, 1.23) associated with a 1°C increase in AT, respectively. Whereas temperature was above the smoothing plot peak, in a tropical zone or at a high temperature level (e.g., >75th percentiles), the RRs were 0.79 (95% CI: 0.68, 0.93), 0.60 (95% CI: 0.43, 0.83), and 0.48 (95% CI: 0.28, 0.81) associated with a 1°C increase in AT, respectively. The results were confirmed to be similar regarding MINT, MAXT, and sensitivity analysis. These findings provide preliminary evidence for the prevention and control of COVID-19 in different regions and temperature levels.


Subject(s)
COVID-19 , China , Humans , Pandemics , SARS-CoV-2 , Temperature
3.
Int J Environ Res Public Health ; 18(2)2021 01 18.
Article in English | MEDLINE | ID: covidwho-1067732

ABSTRACT

With the rapid spread of the pandemic due to the coronavirus disease 2019 (COVID-19), the virus has already led to considerable mortality and morbidity worldwide, as well as having a severe impact on economic development. In this article, we analyze the state-level correlation between COVID-19 risk and weather/climate factors in the USA. For this purpose, we consider a spatio-temporal multivariate time series model under a hierarchical framework, which is especially suitable for envisioning the virus transmission tendency across a geographic area over time. Briefly, our model decomposes the COVID-19 risk into: (i) an autoregressive component that describes the within-state COVID-19 risk effect; (ii) a spatiotemporal component that describes the across-state COVID-19 risk effect; (iii) an exogenous component that includes other factors (e.g., weather/climate) that could envision future epidemic development risk; and (iv) an endemic component that captures the function of time and other predictors mainly for individual states. Our results indicate that maximum temperature, minimum temperature, humidity, the percentage of cloud coverage, and the columnar density of total atmospheric ozone have a strong association with the COVID-19 pandemic in many states. In particular, the maximum temperature, minimum temperature, and the columnar density of total atmospheric ozone demonstrate statistically significant associations with the tendency of COVID-19 spreading in almost all states. Furthermore, our results from transmission tendency analysis suggest that the community-level transmission has been relatively mitigated in the USA, and the daily confirmed cases within a state are predominated by the earlier daily confirmed cases within that state compared to other factors, which implies that states such as Texas, California, and Florida with a large number of confirmed cases still need strategies like stay-at-home orders to prevent another outbreak.


Subject(s)
COVID-19/epidemiology , Pandemics , Weather , COVID-19/transmission , California , Florida , Humans , Models, Theoretical , Ozone , Risk Factors , Spatio-Temporal Analysis , Texas , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL